
6 Testing Experience – 24/2013

No. 25 “Crowd Testing”
Publication: March 2014
Deadline for article submissions: January 15, 2014

Submit your article for our next issue and share your experiences
and knowledge with your peers.

Become an author for
Testing Experience!

More information at:

write.testingexperience.com

By Piet de Roo

How Do You Slice Your Pizza?
On the Unification of the Terminology and the Procedure
for Equivalence Partitioning

Equivalence partitioning is one of the software test design techniques
that really makes sense. So much sense that almost every tester ap-
plies this technique, some without even realizing that what they call
“common sense” is actually a formal technique. Yet somehow we, as a
testing community, do not seem to agree on what the procedure is for
equivalence partitioning. We do not even agree on the terminology. Is
a partition the same thing as a class? What does it mean that a class is
valid or invalid? Once we know what the classes are, how do we combine
them into test cases? Do we need output partitioning? In this article I
will make a proposal for a unification of the terminology for equivalence
partitioning and I will attempt to find a single method for deriving test
cases. I gathered the knowledge of many test gurus and I looked for the
common denominator, trying to remove the ambiguity without creating
a mathematical challenge.

Sources
Quite a few sources were consulted to gather information on the EP
technique. Most of the authors refer to Glenford Myers [1] and Boris
Beizer [2]. Not all sources describe the full process and not all sources
describe the same process. The most practical information on how to
apply the technique has been described by Erik van Veenendaal [6] and
Edward Kit [3].

Terminology
Bits and pieces

In equivalence partitioning we take the inputs to a computer program
and chop them up into bits and pieces that are supposed to be handled
in the same manner by the program.

Various sources use various terminology to describe these bits and pieces:

▪▪ Myers [1]: “The equivalence classes are identified by taking each
input condition … and partitioning it into two or more groups.”

▪▪ Black [9]: “… equivalence classes, which are also called equivalence
partitions …”

▪▪ Van Veenendaal [6]: “… equivalence classes or partitions …”

▪▪ De Grood [10]: “… valid and invalid equivalence categories …”

Let’s have a look at the mathematical origin of the term partition, which
is “set theory”. I could not find my old schoolbooks, but Wikipedia tells
me that:

“A partition P of a set S is a collection of pairwise disjoint nonempty
sets such that ∪P=S.”

and

“Any partition P of a set S introduces an equivalence relation on S,
where each A∈P is an equivalence class. Similarly, given an equiva-
lence relation on S, the collection of distinct equivalence classes is a
partition of S.”

I propose to go back to basics and stick to the mathematical terms as
used in set theory.

From the mathematical lingo above we learn the following (rephrased
in plain English):

▪▪ Partitioning is the act of chopping things up.

▪▪ The way something is chopped up into a collection of bits and pieces
is called a partition.

▪▪ The bits and pieces themselves are called classes.

So when I identify two possible partitions for the integers 1 to 10, it
means that I can split them up in two ways, i.e. the odd numbers and the
even numbers (this is the first partition) or the prime numbers and the
numbers that are not primes (this is the second partition). Separating
the numbers smaller than 5 from the numbers greater than or equal to
5 yields a third partition also consisting of two classes.

Valid and invalid

Once the input domain for a program has been partitioned into equiva-
lence classes, we have to decide whether these classes are valid or invalid
before we can combine them into test cases. But how do we define “valid”?

▪▪ Black [9]: “… valid classes … describe valid situations that the
system should handle normally …”

▪▪ Van Veenendaal [6]: “Invalid data in the context of EP does not
mean that the data is incorrect: it means that this data lies outside
a specific partition”

▪▪ Burnstein [7]: “Invalid classes represent erroneous or unexpected
inputs”

I have also been told that a class should be considered invalid when the
behavior of the program is not specified for input from that class. But
what if the specified behavior is an error message? D.J. de Grood [10] goes
as far as saying: “… is not an invalid value because the error handling for
this input value has been specified …”.

Testing Experience – 24/2013 7

I propose to adopt and adapt the definitions as applied in the classifica-
tion tree method.

“Valid classes describe input situations which are processed regularly by
the test object. Invalid classes should provoke an error handling reaction
by the test object.” Most of this quote is original. I adapted it by adding
the word “should” to cover those situations where the error handling
mechanism is not (yet) in place and I put in the word classes where
Grochtmann [4] talks about “test cases”.

The recipe
Slicing and dicing

It is now clear what partitioning is (slicing and dicing) and what a class
is (a slice or a dice), but not yet how the input domain is to be sliced. Van
Veenendaal [6] and Kit [3] give a good overview of all kinds of input and
how they typically could be partitioned, but is this a tester’s job? The basis
for partitioning is already present in the requirements “Children under
the age of 6 get free entrance when accompanied by at least one parent”.
We are given the partition for age and for number of accompanying
parents for free. We do have to make sure, though, that the customer,
the requirements engineer, and the software developer all interpret the
information in the same way.

Combining classes

Now we have clarified the terminology stuff, and I hope you can agree
with the choices I made, we come to the method of combining classes
into test cases. There are a lot of opinions among the referred sources
on EP, so again we will have to make choices.

Let’s first have a look at the standard for SW component testing – BS
7925-2 [5]. This standard offers us freedom: “Two distinct approaches
can be taken when generating the test cases. In the first a test case is
generated for each identified partition on a one-to-one basis, while in
the second a minimal set of test cases is generated that cover all the
identified partitions.” Note that the word partitions is used, where I
propose to use classes.

Most sources create the smallest set of test cases that cover all valid
classes and subsequently follow Myers’ [1] approach: “Write a test case
that covers one, and only one, of the uncovered invalid equivalence
classes” until all invalid classes are covered as well.

The reason for not combining multiple invalid inputs into one test case
is clearly indicated by Myers and quoted by Kit and Veenendaal: “If
multiple invalid ECs are tested in the same test case, some of those
tests may never be executed because the first test may mask other tests
or terminate execution of the test case.” Yet some ([6], [9]) state that a
single, completely invalid test case may be useful. Especially in web ap-

No. 25 “Crowd Testing”
Publication: March 2014
Deadline for article submissions: January 15, 2014

Submit your article for our next issue and share your experiences
and knowledge with your peers.

Become an author for
Testing Experience!

More information at:

write.testingexperience.com

8 Testing Experience – 24/2013

plications, input data are often entered in a form and are checked for
validity before being sent to the server.

Let me present to you the following menus for combining classes:

Choice 1 – a low-fat meal

▪▪ Starter: a minimal set of test cases covering all valid classes

▪▪ Main course: a minimal set of test cases covering all invalid classes

▪▪ Dessert: sorry, no dessert

Choice 2 – a regular meal

▪▪ Starter: a minimal set of test cases covering all valid classes

▪▪ Main course: a set of test cases, each covering one single invalid
class at a time, until all invalid classes are covered (served)

▪▪ Dessert: sorry, no dessert

Choice 3 – a hearty meal

▪▪ Starter: a minimal set of test cases covering all valid classes

▪▪ Main course: a set of test cases, each covering one single invalid
class at a time, until all invalid classes are covered (served)

▪▪ Dessert: one single test case covering only the finest invalid classes

Choice 4 – (almost) all you can eat

▪▪ Starter: a minimal set of test cases covering all valid classes

▪▪ Main course: a set of test cases, each covering one single invalid
class at a time, until all invalid classes are covered (served)

▪▪ Dessert: a minimal set of completely invalid test cases covering all
invalid classes

▪▪ Extras: for the extremely hungry, we offer a well chosen composi-
tion of additional test cases covering all output classes

And how do we choose? Well, it depends on what we know about the
subject under test. For low risk situations, when you are not very hungry,
the smallest set of test cases might be the right choice. If we know, like
in the web site example above, that the software is supposed to check
each value entered in the fields of a form before starting the calculation,
it is wise to add that extra completely invalid test case.

For situations with a higher risk, we want to make sure that each and
every one of the invalid classes is recognized as being invalid and treated
as such, so we need at least a good regular meal or maybe even “all you
can eat”.

But how about the extras? Is output partitioning a nutritious addition,
or is it just fattening?

Again, it depends on the situation and the goal of testing. When you are
testing a module that translates input into output (which happens quite
often) and, subsequently, that output is used as input to another mod-
ule, it may be very valuable to know whether or not all possible output
is going to be accepted or rejected for the right reasons. In fact we are
talking integration testing here. In order to execute a test like this, all
possible input classes for the accepting module must be generated. So

we need to know all about the output of the calling module. The range
of the calling module must fit with the domain of the called module [2].
As Beizer puts it, “… the caller’s range is the caller’s notion of the called
routine’s domain …” and we want to verify that that notion is correct.

Bon appétit!
I guess an upfront apology is appropriate. It was never my intention
that the next time you eat a pizza quattro stagioni you no longer want
to slice it, but you want to partition it into four classes and you expect
every bite from a single class to taste equivalently.

References
[1]	 Myers, Glenford J. The art of software testing. 1979.

[2]	 Beizer, Boris. Software Testing Techniques. 1983.

[3]	 Kit, Edward. Software Testing in the Real World. 1992.

[4]	 Grochtmann, M. Test Case Design Using Classification Trees. 1994.

[5]	 BS7925-2. 1998.

[6]	 Van Veenendaal, E. The testing practitioner. 2002.

[7]	 Burnstein, Ilene. Practical software testing. 2003.

[8]	 Koomen, Tim e.a. TMap Next. 2006.

[9]	 Black, Rex. Advanced Software Testing – Vol. 1: Guide to the ISTQB
Advanced Certification as an Advanced Test Analyst. 2008.

[10]	 De Grood, D.J. Testgoal. 2008.	 ◼

Piet de Roo has been engaged in software development
and testing since 1996. He has been employed as a test
analyst, test manager, test process manager, and test
automation manager mainly in the automotive
branch, focusing on embedded software in car radio
and navigation systems. In various international roles
he has been responsible for software verification in
traditional and agile processes. Currently Piet works

at Improve Quality Services as a consultant, coach, and teacher in testing,
test management, and test automation.

> about the author

