
THE VOICE OF SOFTWARE QUALITY

06
MAY 2019

THE WORLD
OF SOFTWARE
QUALITY

AUTOMATIZATION
IN A LABORATORY

ENVIRONMENT

DESIGN THINKING
IS A “TEAM SPORT.”

ABOUT CLOUDS
AND SERVERLESS
TECHNOLOGIES

THE REGRESSION
MANAGEMENT
QUADRANTS

TESTING
APPLICATIONS
FOR CHILDREN

Christopher P. Rüger
on developments

in research
ARTICLE

Mark Tannian
on what it means to be

a Design Thinker
INTERVIEW

Abby Kearns on function
as a service
INTERVIEW

Pieter Withaar and
Johan van Berkel
on code and test quality
ARTICLE

Nadia Soledad on the
difference of testing apps
for adulds or children
ARTICLE

14

ANY CHANGES MADE TO THE CODEBASE FROM
THE VANTAGE POINT OF ONE USER NEED CAN
YIELD UNEXPECTED CHANGES IN ANY NUMBER
OF OTHER USER NEEDS.

THE REGRESSION
MANAGEMENT
QUADRANTS

Capable of detecting regression at low execution costs as well as saving engineers from
death by boredom, automated checks are often considered to be the silver bullet to regression.
But when applied in the real world, the promise seems to be more of a fairy tale: after all the
investments are done to automate the regression tests, the amount of regression doesn’t seem
to decrease. And even though the execution is cheap, maintenance sure isn’t.

C

The burden of regression

When a product is changed for whatever purpose, de-
velopers will primarily focus on changing the codebase
to support the new user need. Assuming that the user
need is implemented in an existing product, this means
building new code as well as refactoring existing code to
integrate the user need in the product. The resulting cy-
cle of development, test, and fix will ensure that –even-
tually – the new user need is met.

Unfortunately, user needs are never implemented in per-
fect isolation. Instead, the code is often reused to fulfill
multiple user needs. As a result, any changes made to
the codebase from the vantage point of one user need
can yield unexpected changes in any number of other
user needs. Whenever such an unexpected change oc-
curs, we speak of regression. Although regression, tech-
nically, doesn’t include a specific impact on the business
value within its definition, positive regression rarely
ever occurs. More likely, the impact is either negligible or
detrimental (in the form of increased maintenance costs
and/or decreased product performance).

With the risk that regression poses towards the business
value of the product, the need to prevent regression
from reaching the customer is obvious. Roughly speak-
ing, the level of detrimental regression that reaches the
customer can be lowered by:

• Preventing the occurrence of regression during devel-
opment

• Detecting any (residual) detrimental regression before
reaching the customer

Keeping the impact of regression in check is a never-end-
ing story that requires constant effort to maintain. But
since it prevents potential issues from occurring, it is
virtually impossible to quantify the economic benefits
that come from the effort spent on managing regression.
As a result, organizations are inclined to spend as little
effort on the topic as possible.

KEEPING THE IMPACT OF REGRESSION
IN CHECK IS A NEVER-ENDING STORY
THAT REQUIRES CONSTANT EFFORT
TO MAINTAIN.

Following this line of reasoning, extensive automated re-
gression testing is often seen as the silver bullet to regres-
sion. By writing tests that focus on verifying the busi-
ness value of all user needs, only detrimental regression
is caught and fixed. Only code that causes detrimental
regression is reworked, and since automated tests are
cheap and fast to execute, the cost-benefit ratio of this ap-
proach is supreme. Or so it seems… Because take a step
back and you will see that this approach only results in
endless drudging through the swamps of maintenance
hell while chasing a unicorn that doesn’t exist.

If that last bit doesn’t make a lick of sense at the mo-
ment, then you probably haven’t been introduced to the
Regression Management Quadrants. Luckily, that’s ex-
actly what this article is about.

Introducing: The Regression Management
Quadrants

The Regression Management Quadrants take the two
methods of managing (detrimental) regression (i.e. pre-
vention and detection) and plot the relationship between
them into four quadrants that can help organizations
determine on how they should (and shouldn’t) manage
regression. But before we start talking about the quad-
rants, let’s start by explaining what we feel are the most
impactful factors when it comes to the prevention and
detection of regression:

Preventing regression by increasing code quality
The first method to limit detrimental regression is to
prevent regression from occurring in the first place. Its
success rate is mostly determined by the cognitive effort
it costs to correctly assess the impact of any change in
code on the whole codebase. Although experience plays
a role, code quality is vastly more impactful. When
talking about code quality, we mean any characteristic
that impacts the effort it takes to translate the code into a
relevant and correct mental model. This can be anything
ranging from readable naming conventions to cyclomat-
ic complexity, code cohesion, and code coupling.

#06

1616

THE REGRESSION
MANAGEMENT
QUADRANTS

Detecting regression by high-quality tests
The second method to limit detrimental regression is to detect regression before it
reaches the customer. Detection is done by testing; therefore, the most impactful
factor is the quality of testing. When talking about test quality, we mean any char-
acteristic that impacts either the effectiveness or efficiency at which tests can detect
detrimental regression. Effectiveness is determined by the amount of detrimental
regression still reaching the customer (the less regression goes through, the more
effective the tests are). Efficiency is determined by the time and effort it takes to
sustain the regression tests, which can be characterized by, for example, test redun-
dancy and test maintainability.

Characterizations as result
Now that we have defined the most impactful factors for successfully preventing
or detecting regression, we can plot both of them, resulting in the four quadrants
mentioned earlier:

Each quadrant in the RMQ represents a potential strategy for managing regression
and comes with its own reasons for why organizations end up using the strategy,
and why – as is the case with any self-respecting Four Quadrant Matrix – the top
right quadrant is the only correct answer to managing regression. Let’s dive into the
quadrants, shall we?

Johan van Berkel
Test consultant and
technical writer at
Improve Quality Services.

Pieter Withaar
Test automation
enthusiast, consultant
and trainer at Improve
Quality Services.

Low code quality, low test quality: Welcome to the
swamps of maintenance hell
Most product developments are extensions or improve-
ments to an existing product. Whether it is the result of
prioritizing new features over maintenance activities in
the earlier days of the product life cycle or legacy code
inherited from days long gone that no one dares touch,
most organizations are stuck with a product that con-
tains (a lot of) technical debt. Since assessing the impact
of a change in a product with low code quality is nearly
impossible, the product will yield high levels of regres-
sion. Initially, this might result in a storm of complaints
from customers. This quickly backfires into a reflex re-
sponse by the organization: development needs to stop
regression bleeding through yesterday. Since the fastest
way to stop bleeding is to apply a Band-Aid, the effort
to detect regression is intensifying, but with low code
quality, regression doesn’t decrease; it merely shifts to
other areas of the product. With each failure found, the
automated checks are expanded, gradually growing to
unmanageable proportions. Welcome to the swamp of
maintenance hell.

Low code quality, high test quality: unicorns are still
mythical
The most common approach to dealing with mainte-
nance is to prioritize testing, which is the reflex response
to issues in the field for any organization. However,
sustaining regression testing results in high costs, and
eventually, people will repeat the logic of this article’s
introduction: we need good tests, and since we can’t pre-
dict where regression occurs, we have to test everything
all the time. From there, test automation is only a step
away: “If all regression testing is done extensively and
automated”, they reason, “we can limit the code inter-
vention to fixing parts that cause actual issues, and auto-
mated tests are cheap top execute, so it’s a no-brainer!”.

In practice, this reasoning neglects a critical component
of the cost of testing, in general, and test automation,
specifically: maintenance. Even when the test suite is
effective at detecting regression, its application is inher-
ently inefficient. Remember: regression is not always
detrimental. In some cases, its impact is trivial. But a
trivial change in behavior is a change nonetheless, and
automated tests are binary in their result. This means
that with any trivial regression in the product, the effec-
tiveness of the tests will decrease as some tests will fail
while not detecting detrimental regression.

REGRESSION IS NOT
ALWAYS DETRIMENTAL.
IN SOME CASES, ITS IMPACT
IS TRIVIAL. BUT A TRIVIAL
CHANGE IN BEHAVIOR IS A
CHANGE NONETHELESS...

#06

18

THE REGRESSION
MANAGEMENT
QUADRANTS

To make the regression tests effective again, all regres-
sion tests failing due to trivial changes need to be ad-
justed to account for the change. This, basically, moves
the maintenance burden from code to test, and since
test only detects regression and does not prevent it, this
maintenance effort is endless and ever-changing. Where
the organization thought it found the magical unicorn,
they actually end up running circles in the swamps of
maintenance hell.

High code quality, low test quality: well, that escalated
quickly…
It may be that the organization has spent considerable
effort on code quality in the initial version of the product,
understanding that doing so would lower the burden
of maintenance. Or it could be that the organization
stuck in the swamps of maintenance hell didn’t fall for
the unicorn and understood the value of preventing
regression over detecting it. Regardless of their reason,
the organization could explicitly strategize to focus their
attention on code quality. Although this is, arguably, the
“lesser evil”, it still poses some challenges on its own.

The problem with good code quality is that – on the
surface – it devaluates regression testing. If regression
rarely ever occurs, then why spend all this effort on
building extensive automated regression tests that rarely
ever detect detrimental regression? Alternatively, there
might be a lot of effort spent on test automation, but
the resulting tests are actually ineffective in detecting
detrimental regression. How can you know whether
they are effective or not if nothing ever fails? Regardless
of whether the automated tests are deprioritized or
ineffective, the result is the same: all tests are “green”
and no complaints from customers, so all is well, right?

The answer is “yes, for now”. The primary purpose of
regression tests should not be to find practical failures
but to help identify patterns that emerge from finding
those failures. Consider this: degradation in code quality
should cause regressions tests to fail regularly and
erratically. But with automated tests being ineffective at
detecting regression, this pattern doesn’t occur. Instead,
the regression caused by the gradual decline in code
quality builds until it reaches critical mass and blows
up in their faces. Customer complaints start pouring
in on a regular basis until the damage is too much to

ignore and the strategy is revisited. Since the issues
were not detected, the first inclination is to analyze the
automated tests, which will uncover that the quality of
the automated tests is, in fact, insufficient. Suddenly, the
unicorn in the bottom-right starts to look very real as it
winks seductively. And before we know it, we’re back in
the swamps of maintenance hell.

High code quality, high test quality: at long last, we
reach the Promised Land
With all the wrong ways of going about managing regres-
sion explained, we end our story in the quarter where
everyone wants to be: the Promised Land. It should no
longer come as a surprise that proper regression man-
agement requires investing in both high-quality code
and regression tests. Hopefully, we helped you realize
that the true purpose of regression testing shouldn’t be
to detect failures but to prevent them from occurring in
the first place. So even though the initial costs of setting
up your product and tests for proper regression manage-
ment can be costly, the upkeep of such a strategy is sig-
nificantly lower than the costs your organization would
incur from buying all those silver bullets.

Three of the four quadrants turned out to be dead ends,
but they still serve a purpose: providing arguments that
prevention and detection both have their own merit.
High code quality is needed to achieve low regression
rates, whereas high-quality regression tests are required
to retain it. Additionally, the quadrants can help to
determine which quadrant your organization is at, which
– as it turns out – requires a broader perspective than
just analyzing the current list of incidents. Instead, focus
on patterns that occur over time: do the automated tests
fail frequently? Better double-check your code quality.
Structurally reworking failed test cases that shouldn’t
have failed in the first place? You might be chasing that
illusive unicorn. Perfect scores on static code analysis with
all builds green? No time for complacency, but remain
critical about your test coverage to prevent the need to
“duck and cover” from the sudden influx of customer
complaints. And regardless of the characterization
applicable to your organization, we hope we helped
in the process of turning the maintenance hell, into a
maintenance “swell”…

Ok, we’ll show ourselves out now.

ADDITIONALLY, THE QUADRANTS CAN HELP
TO DETERMINE WHICH QUADRANT YOUR
ORGANIZATION IS AT...

