
The Future
of Software
Quality
Assurance

Stephan Goericke Editor

The Future of Software Quality Assurance

Stephan Goericke
Editor

The Future
of Software
Quality
Assurance

Editor
Stephan Goericke
iSQI GmbH
Potsdam
Germany

Translated from the Dutch Original book: ‘AGILE’, © 2018, Rini van Solingen & Manage-
ment Impact – translation by tolingo GmbH, © 2019, Rini van Solingen

ISBN 978-3-030-29508-0 ISBN 978-3-030-29509-7 (eBook)
https://doi.org/10.1007/978-3-030-29509-7

This book is an open access publication.

© The Editor(s) (if applicable) and the Author(s) 2020
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence and indicate if changes
were made.
The images or other third party material in this book are included in the book’s Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the book’s
Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Foreword

In June 2002 David Parnas, one of the pioneers of software engineering, wrote1:

Software is well known for low reliability and lack of trustworthiness. In part this is
attributable to the difficulty of dealing with the complexity of today’s software systems,
but the inadequate knowledge, skills, and professionalism of many of the practitioners also
contributes to this problem. Moreover, we can thank the inadequately qualified people who
produced today’s software for the unreliability and complexity of the products that serve as
support software for new products.

Dave sees the inadequate education of the people involved in software develop-
ment as a major problem. In the field of software, lifelong education and training is
essential to keep up to date with the rapid evolution. iSQI has been dealing with this
problem for 15 years now and has certainly contributed in many areas to improving
the education of people and thus the quality of the software.

The many contributions in this book clearly reflect the numerous ways software
quality assurance can play a critical role in multiple areas.

About 75 years ago, the first electronic computers were used to calculate
mathematical problems—also from the military sector. In the following years,
computers increasingly took over routine tasks and tasks that required a high degree
of precision. Due to technical progress and the associated speed of the systems, large
amounts of data can now be processed and evaluated in a short time. The computer
now dominates our everyday lives. It has become indispensable, because without it
our life today would no longer be possible.

Today we are at a radical turning point. (So-called) artificial intelligence is used
in more and more software systems, be it automatic speech processing, autonomous
driving or machine learning. In many areas we no longer use software exclusively
to make life easier, but also as a tool to help us make decisions or simply delegate
decision-making tasks to the software itself.

1https://en.wikipedia.org/wiki/David_Parnas Citation from David Parnas’s preface to the German
book Spillner/Linz “Basiswissen Softwaretest”.

v

vi Foreword

So far many of these systems have been used as decisive aids; helping a person
to make a more substantiated decision. For example, a physician can have an X-ray
image analysed by a system and use the information obtained to make his or her
decision. The question arises or will arise: “When is the decision completely left to
the system, since the system results show a higher reliability of correctness of the
diagnosis than diagnoses of doctors?” In other areas, such as autonomous driving,
some decisions have to be made so quickly that they can only be made by the system
itself.

In fact, it is not the system that decides, but the person who has programmed the
system accordingly. At least that’s how it has been so far. When artificial intelligence
is used, however, this is no longer definite. With neural networks and deep learning,
the results are no longer predictable and therefore no longer depend directly on the
programming.

These few examples already show how crucial the quality of the systems is and
thus the education of the people responsible for the development and testing of these
systems. This is why iSQI will continue to be a sought-after partner for further
training and certification in the coming years.

In addition to well-founded specialist knowledge, ethical issues will have to
be the focus of attention in the coming years. How do we as a society—even as
humankind—want to deal with the fact that autonomous weapons themselves decide
which people are being killed?

We must all ask ourselves the question: “Which decisions must still be taken by
people and which can we delegate to software systems?”

We, as participants in the development of software systems, have a particularly
high responsibility for what the near future will look like and where it will go in the
coming years.

I hope that we will take our responsibility and shape the future positively.

GTB, Hochschule Bremen, Bremen, Germany Andreas Spillner
July 2019

Preface

A Question of Quality

Software testing is not a regulated profession. In principle, anybody can become a
tester. This was always the case and remains so today. However, there are standards
that should apply to all testing professionals and which are a prerequisite for anyone
wishing to be taken seriously as a software tester.

An early version of a standardized syllabus was developed in 1998 known as the
“Certified Tester”. Four years later Austria, Denmark, Finland, Germany, Sweden,
Switzerland, the Netherlands and the UK established the International Software
Qualification Board (ISTQB

®
) to define and promote a body of knowledge for the

profession of software tester.
It is one matter to create a set of regulations; it is quite another to ensure

that the regulations are observed. This is where a certifying body has a crucial
role to play, and hence the International Software Quality Institute (iSQI). Exactly
15 years ago a working group known as ASQF (Arbeitskreis Software-Qualität und
-Fortbildung e.V.) established iSQI as an independent body to serve as a safety net
and guarantee for an uncompromising and consistent level of quality in the training
and certification of specialists throughout the world. In the following 15 years the
quality of the profession of software tester has improved immensely. Today there
are almost 650,000 ISTQB

®
-certified software testers worldwide.

Quality Standards Are an Imperative

It is the standards maintained by specialists at every level of software production that
accelerate improvements in quality. Both functional and non-functional ‘quality’
can only be achieved when people have a sense of what the term ‘quality’ really
means and they know what they have to do to achieve this. Yet how can they do
this when they have to deal with complicated testing in a limited time? And how

vii

viii Preface

does this work when teams are working all over the globe, in different time zones?
How can tests be scheduled, if results have to be delivered within an agile working
regime or during the development phase?

The testing profession has changed considerably in the last 15 years, and today
it faces enormous new challenges.

Automation and the use of artificial intelligence have brought changes to methods
and to core areas. Here further improvements must be made in training and
continuing professional development to develop general and specialist testing skills
and competence.

The Future Is Before Us

Fundamental changes are emerging that will have significant impact on our society
in the coming years, and in some cases have already changed it. The response
capacity of machines will continue to increase sharply. They will exceed human
possibilities many times over. Machines will process data faster, be more mobile and
more flexible. Robot axes are already moving autonomously in Phoenix, USA; in
Heidelberg, Germany, a trained artificial intelligence system recognizes skin cancer
on photographs better than most doctors with average levels of experience.

Information is being processed by ever more powerful devices. The results are
becoming ever more complex. How can today’s massive data volumes be monitored
and controlled by humans? Or, to put it another way, how can a human test a robot
that is more ‘intelligent’ than the tester him/herself?

The need for continuing professional development will continue to increase.
Every day we receive new information on our smartphones about our changing

world. About the jobs that are disappearing and about others that are replacing them.
About transparent data that offers practical advantages to us in a thousand everyday
things. At the same time we hear (and see) policy-makers debating these very things.

New Ethics

Artificial intelligence will not take away the necessity for us to think. On the
contrary, certainly we will make use of artificial intelligence to control the ever-
more complex functions of machines. We must nevertheless concentrate on what
we can do as humans—and on what we can pick up and learn to do. For all the
questions about artificial intelligence, about digitization and automation, the human
will remain the decisive factor.

After 15 years of working intensively in the IT training sector, iSQI has shown
with complete clarity that without specialists, automation is nothing. And artificial
intelligence is nothing without people who specify to it what is ‘intelligent’. The
more complex the systems become, the more important will be training and also

Preface ix

ongoing professional development. We do not need to compete with machines!
Rather, we need to control them. How we do this is above all a question of attitude of
mind, of ethics. What is it that we want, what is the focus of our desires, how should
we act? We should follow commonly agreed ethical principles. We need a code of
conduct for the future and our work in service to society. The good of humanity is
our first objective, and not the development of machines. All products, software and
devices are subject to the highest possible quality demands, always with regard to
their benefits. We undertake to maintain fair relations with our colleagues, we take
pride in the image of our profession and strive to continue to learn for the entire time
that we are in the world of work.

The formula for the future:

Digitization is qualification plus automation—upskilling leads digitalization.

One matter is for sure. The more accurately one may assess the developments,
the better we can prepare ourselves for tomorrow. For us, the workers, developers,
testers, marketers, employers and employees of the future, this means one thing
above all: education. Being able to prepare ourselves for the new tasks. The
Canadian creators of the careers2030.cst.org website, for example, list the jobs
that will be in demand in 2030 with defined job descriptions. This makes for
exciting reading, while allowing some to look into the future with relief. There
will not be fewer jobs then than now. There will be designers then, though they
may be called recyclable design specialists; there will be farmers, though their
profession will be based on microclimates and the question of how quickly solar
energy and water reach the plant. Their job title might then be ‘agroecologist’.
Marketers could become e-media makers and arts managers for big data-driven
video, text and game content. And IT experts? They will develop ever more into
communicators that enable the different computers to communicate with each other.
Software testers will have a much stronger presence in the project planning stage.
They will concentrate more on human-machine communication. Things won’t be
simpler. But the opportunities will outweigh the risks.

This book, issued to mark the 15th anniversary of iSQI, is intended to make
a further contribution to raising the profile of the profession of software testing.
How is the profession of tester changing? What must a tester prepare for in the
coming years, and what skills will the next generation of software testers need?
What opportunities are available for further training today? What will testing look
like in an agile world that is user-centred and fast-moving? What tasks will remain
to the tester once the most important processes are performed automatically? These
are questions that we will have to answer for ourselves.

CEO iSQI Group, Potsdam, Germany Stephan Goericke

Contents

Change-Driven Testing . 1
Sven Amann and Elmar Jürgens

The Next Generation Tester: Meeting the Challenges of a Changing
IT World . 15
Graham Bath

Testing in DevOps . 27
Frank Faber

The Tester Skills Program . 39
Paul Gerrard

Testing Autonomous Systems . 61
Tilo Linz

Testing in the Digital Age . 77
Rik Marselis

Measure Twice, Cut Once: Acceptance Testing . 93
Mitko Mitev

Distributed Testing Teams. 105
Alfonsina Morgavi

Testing Strategies in an Agile Context . 111
Zornitsa Nikolova

Testing Artificial Intelligence . 123
Gerard Numan

Responsible Software Engineering . 137
Ina Schieferdecker

Chasing Mutants . 147
Adam Leon Smith

xi

xii Contents

Embracing Quality with Design Thinking . 161
Mark F. Tannian

Developing Software Quality and Testing Capabilities in Hispanic
America: Challenges and Prospects . 175
Ignacio Trejos-Zelaya

The Future of Testing . 197
Kaspar van Dam

Subconscious Requirements: The Fright of Every Tester 207
Hans van Loenhoud

The Why, How and What of Agile Transformations . 217
Rini van Solingen

Next-Generation Software Testers: Broaden or Specialize! 229
Erik van Veenendaal

Security: It’s Everyone’s Business! . 245
Keith Yorkston

The Future of Testing

Digging in the Past of Software Testing
and Unearthing the Future

Kaspar van Dam

Abstract Many articles have been written on this topic. Many people have been
trying to predict the future of software testing. Only time can tell who’s right and
who’s wrong. Being a software tester today and a former archaeology student, I’ve
decided to start digging in the past of Software Testing in an attempt to predict
the future of this profession. What will change? What will stay the same? And what
things from the past might resurface? Let’s make a timeline starting around 20 years
ago in 1998 (which is the moment when I myself started digging around in the world
of computers and software) and try to stretch this all the way to 20 years in the future
with 10-year intervals.

Keywords Software testing · Software quality · Software testing history ·
Software testing future

1 Introduction

Many articles have been written on this topic. Many people have been trying to
predict the future of software testing. Only time can tell who’s right and who’s
wrong. Being a software tester today and a former archaeology student, I’ve decided
to start digging in the past of Software Testing in an attempt to predict the future
of this profession. What will change? What will stay the same? And what things
from the past might resurface? Let’s make a timeline starting around 20 years ago
in 1998 (which is the moment when I myself started digging around in the world of
computers and software) and try to stretch this all the way to 20 years in the future
with 10-year intervals.

K. van Dam
Improve Quality Services, Zwolle, Netherlands

© The Author(s) 2020
S. Goericke (ed.), The Future of Software Quality Assurance,
https://doi.org/10.1007/978-3-030-29509-7_15

197

198 K. van Dam

2 The Past

1998
Steve Jobs has returned at Apple just a year ago and presented the first iMac. Google
is founded and the first MP3 is created. It’s also the year in which MySQL and XML
1.0 are introduced. Windows 98 is released and Bill Gates gets a pie in the face.
Seti@Home is started up and Internet Explorer becomes the most popular internet
browser. The world gets to know blogs and it’s also the start of ISEB Software
Testing Certification (IEEE 829) and the third anniversary of TMap, which has
changed the world of software testing quite a bit.

From the first day software was being developed, software was also being
tested. However, around 1998 the first little steps were being taken in an effort to
make software testing into a serious profession and people became aware quality
assurance was something of importance in an IT project. But in 1998 a lot of
software was still being released without any mentionable testing. At IT-related
study programmes, software testing wasn’t even part of the curriculum. But the
introduction of TMap and other methodologies made an impact in the software
development industry. People were trying to get a grip of what software testing was
all about. They tried learning and discovering which steps to take to get software
tested and get a grip on the quality of the software that was being developed. In
the years that followed, software testing became an actual profession. However,
there weren’t yet any real requirements for the job. If someone could read and
write he/she could become a software tester. If you failed at developing software
you could always give software testing a shot. But most software testers back then
didn’t even have a background in IT. Strangely enough (looking back at it), this was
actually considered something good. The consensus was that software testers should
be strictly independent. Therefore they should not be hindered by any technical
knowledge. They should focus on the functional requirements which were being
written down in massive documents and by trying out newly developed software as
an end-user, they should try and find out if these requirements were being met. In
reality this often meant software testers considered it a sport to find as many bugs
as possible. Some software testers might even remember the bumper stickers that
were popular back in the days stating things like “Software Testing: You make it,
we break it!” or “Every tester has the heart of a developer, in a jar on his desk”.

2008
The world has changed. Computers and the World Wide Web are now commonplace.
The first iPhone is barely a year old and Android and Chrome are being born.
Facebook has been available to the general public for 2 years and no one can
imagine a world without the Google search engine anymore. In 2008, both Spotify
and GitHub are founded and it will be another year before the Bitcoin appears.
TMap Next has been around for a few years now and ISTQB is celebrating its sixth
anniversary. The Agile Manifesto is already 7 years old, but is now starting to get
some feet on the ground. Also test automation is emerging more and more.

The Future of Testing 199

Most probably for most testers 2008 just went by like every other year. However,
it has been quite an important period for the profession. Testing became more
about involving people instead of endlessly scrutinizing the different documents
and making it a sport to file as many bugs as possible in some bug tracking tool.
From 2008 onwards, testers (and other people in the IT work field) slowly started
embracing the agile methodology. After spending years and years making software
testing into a serious, but especially an independent, profession all of a sudden, the
profession started moving back to its origins. Because in the 1980s (and also before
that) software testing wasn’t considered a specialist job at all. A software developer
wrote some software, tested it and went on with the development. As long as the
system didn’t crash and seemed to be doing what it was supposed to be doing it
must be working as intended. With the introduction of Agile, SCRUM and later on
things like DevOps, testing went back from being a strictly independent specialism
to something that’s part of the entire software development process. Looking back
at it you may say the profession of software testing had lost its way for a decade or
two and from around 2008 onwards it has found its purpose again. Software testing
isn’t about finding bugs. It isn’t about being independent and having a developer’s
heart in a jar on the desk. It’s about working together to create the best possible
software. Software quality isn’t about finding out what’s wrong with the software
(compared to what was written down in a functional design document). It’s about
the software meeting the wishes and demands of the person who will be using the
software, the end-user. Instead of being this separate testing department spitting
out bugs, software testers became part of the development teams. This also meant
more and more software testers actually did get the heart of a developer . . . Until
ca. 2008 it was said software testers tolerated boredom while developers automated
it. When developers and testers started working together it turned out there wasn’t
any need to keep repeating the same manual testing tasks over and over. They could
be automated! And many testers embraced this, they no longer needed to tolerate
boredom! To many it must’ve seemed like test automation was born around 2008, in
reality test automation is as old as software development itself. It was just forgotten
(by most) for a period of time . . .

3 Present Day

We can’t imagine a world without the internet anymore. Smart phones are part
of everyday life and it’s hard to even start comparing software development with
what it was back in 1998. Hardly any IT project is done without at least some
elements of the Agile way of working and things like DevOps and Continuous
Development and Continuous Integration are now becoming commonplace. Words
like communication and teamwork are (almost) considered being magic words in
the world of software development nowadays. So, what have we learned from the
past, implemented in our present and what can it tell about our software testing
future?

200 K. van Dam

Software testing has come a long way, but right now developments in this field of
work are gaining momentum. Things are changing. Fast. And the people involved
need to change along with it or be left behind. Most testing professionals we see
today are nothing like the software testers from back in 1998. A question however
could be: aren’t we changing too fast? Aren’t we forgetting the things we learned
during the last 20 years (and before that)?

Today test automation may very well be the most sought after expertise when
it comes to quality assurance in software development. Software development is
all about continuously producing sufficient quality software. Time is everything,
we want to release new functionality as soon as possible without being hindered
by exhaustive manual testing. Therefore test automation is the only way to go.
However, as some people may have thought for a while, tooling will not replace
the software tester entirely. Simply because tooling isn’t able to test software at
all, it can just execute certain pre-programmed checks on the software. This means
it’s still up to a specialist to come up with the right test cases (and then decide
if they should be automated or not). For software testers this means they should
shift their attention from just software testing (e.g. TMap) to a much broader area.
They should know about automation, tools and frameworks. But they should also
keep a focus on their (testing) skills, including soft skills. Instead of following
some testing technique out of a book, a software tester today should possess a
certain mindset in which they understand people, product and process (P3). And
besides just looking at functionality testers are often expected to keep an eye on non-
functional requirements like performance, security and reliability as well. The shift
from waterfall to agile software development has had a major impact on everyone
involved with IT; however, it may have had the biggest effect on software testers.
And I think this is just getting started . . .

4 The Future

2028
Let’s just try and predict the future. At least, when it comes to software testing.
Continuing with 10-year jumps we go to 2028. If we take a look at the origin of
software testing and how it has developed the last few decades, than where do we
expect the expertise to go next? From what mistakes have we learned? What things
will we still be doing in 2028? What will probably change?

One thing is certain: We cannot predict the future accurately but we can be
pretty sure that a software tester 10 years from now will still have to be flexible.
During the last few decades software testers have changed from being a bit of rigid
personalities who required to be independent on their own little testing island into
possibly the most flexible people participating in any IT project. It’s often the tester
who makes the connection between businesspeople and IT people. It’s often the
software tester who starts working together with business analysts to change the way

The Future of Testing 201

requirements are written down (in order to get a better shared understanding of what
needs to be built and tested by the development team). A software tester is required
to understand what the business is talking about but should also be able to spar with a
developer on how to implement some code and how to automate the tests that should
check if the code is actually working. Therefore a software tester in 2028 might not
even be ‘just’ a software tester. The role might be more about being the linking pin
between business and IT and being the quality conscience of the entire BizDevOps
team. This is something entirely different than back in the days. In 1998–2008
everyone with some analytical skills could become a software tester. If you failed
at being a good software developer, you could still make a career move to software
testing. But in the upcoming 10 years the role current software testers occupy might
even become the most challenging role within software development. Being the
quality conscience, you should always be adapting yourself to new realities. You
should constantly be changing strategies and always keep track of things changing.
Both from a business perspective and a technical perspective.

And even though this may sound like a lot of fun to many people, changing is
actually the hardest thing to do for a human being. Simply put, our brains aren’t
built for coping with change. We were built to be organized, to find structure and
patterns. To do things exactly like we always did them. To understand this we need
to look a bit further back than 1998. More than 10,000 years ago we humans were
still hunter-gatherers. The only thing we needed to worry about was surviving and
the best way to do that was to follow strict patterns. We often went to the same places
to hunt or gather food and we could trust our brain would warn us if anything was
out of the ordinary. Because that’s how the human brain has developed. It’s always
more or less in a relax mode, until something changes, when a chemical called
cortisol is released, also known as the stress hormone. It induces a state known
as the fight-or-flight reflex. Adrenaline starts pumping, our field of vision narrows,
muscles contract. We get hyper-focussed on the one thing that has changed. Was it
a threat? A predator? An enemy? Some other form of danger?

Nowadays we’re working in our twenty-first century offices, but our brains are
still the same as they were 10,000 years ago. They haven’t yet adapted to this new
environment. Evolution doesn’t like to be rushed. So, even though we might think
we embrace change. Even though we think constant change makes our day-to-day
work more fun. Our brains don’t like it at all! Knowing this, it’s no wonder people
on the work floor are clinging to old patterns. There is a reason we often still prefer
to have a structured Ways of Working, preferably documented in some handy Excel
checklist . . . There’s a reason we may feel lost when things all of a sudden change
when we’re in the middle of something. The Agile way of working is all about
adapting to change. But we should be more aware that this is actually something
we humans aren’t really good at! (And if any reader is now shaking his/her head
mumbling ‘no, no, no, that doesn’t apply to me!’, trust me: it applies to you as well.
It’s simple biology! [1, 2]).

So, will we be abandoning the Agile way of working in 2028? I don’t think
so. However, I do suspect we will change it quite a bit. When looking at software
development teams I see a lot of developers struggling with all these Agile meetings,

202 K. van Dam

things changing all the time. When they just started putting a shoulder to the
wheel with some technical challenge there’s someone at their table inviting them
to some refinement or 3-Amigo session because some new insights have popped
up and everything needs to be different. Once again! The problem is, this process
of continuous changing will remain in the future. I think it will even get worse.
Technology had many limitations in the past, but they’re vanishing really quickly. In
the past you could ask an end-user to wait a year or two before expecting some new
functionality. But in 2028 (or really even today already!) when an end-user wants
something of the software, he/she expects it to be there tomorrow. Or possibly even
sooner. And if not: there’s always someone else who can make it happen that fast.
This means in 2028 we IT people need to be even more flexible and more adaptive
to change than we are today. And someone needs to make sure the people writing
the actual code can keep their focus on the code. To make sure the developer knows
where to pick the berries and where to hunt a rabbit without constantly having to
look over his/her shoulder for some predator approaching, figuratively speaking.
And that someone might very well be the person we call a software tester today.

This means software testers have a lot to do in the upcoming 10 years. Because
as Darwin stated: “It is not the strongest of the species that survives, nor the most
intelligent; it is the one most adaptable to change.” If you still want to be part of
the game, if you want to survive in the world of software testing, a software tester
should keep learning, training and adapting to change. Even though our very own
brain is resisting this. The difference between a 1998 software tester and a 2028
software tester may be comparable to the difference between a ‘common’ soldier
and a commando. A soldier is trained to do as he’s being told, a commando however
is trained to stay alive and accomplish his mission by constantly adapting to change.
This doesn’t mean one of these two is better than the other, but it does require a
different type of person, a different training and especially a different mindset to be
a commando instead of a ‘common’ soldier. The software tester of 2028 might very
well be the commando, while the software developer may remain a soldier.

In this (brave?) new world of software development in 2028 I don’t think we’ll
still have the job title ‘Software Tester’. The role will be about so much more than
just testing the software. It might even be probable that the actual testing of software
isn’t the main focus anymore in 2028. Nowadays a lot of manual testing is already
being replaced with automated testing. However, as stated before, test automation
today is just about executing pre-programmed checks on the software. I’m not sure
if we’re there already in 2028, but I do believe artificial intelligence will influence
test automation a lot in the future. Which means that in time a computer might
actually be able to at least do a small amount of actual testing of software instead of
just checking some predetermined things. This would mean that the actual testing
of software would become even less important within the job description. So what
shall we call this ‘software tester’ in 2028? Maybe ‘Quality engineer’? Or ‘Change
specialist’? Maybe even ‘Dev Commando’? I personally wouldn’t vote for any of
these new job titles. I think in time some new term will pop up describing this new

The Future of Testing 203

role. After all, back in 1998 who would have thought we would be having business
cards today with terms like ‘Scrum-master’ or ‘Product-owner’ . . .

2038
It may be near impossible to predict the future 20 years ahead. But let’s give it a
try. In 2038 we’re probably driving autonomous cars, and robots may very well be
part of everyday life. Artificial Intelligence will be a lot more intelligent than it is
today and may even be replacing knowledge workers. Will there still be software
development as we know it? And will there be software testing?

I personally believe we will still be needing people to develop software even
though it’s probable we’ll be able to produce a lot more software with a lot
less people. It is possible software has become intelligent enough to be testing
itself. Software may be continuously running self-diagnostics which indicate when
something’s going wrong and the software in question might even be able to fix
itself, at least to a certain degree.

But I don’t think computers and robots will have replaced everyone involved with
the development of software. Simply because of one thing: Artificial Intelligence
is only intelligent about certain things, but really unintelligent when it comes to
some other things . . . This is clearly visible today, but I don’t expect it will be
all that different in 20 years from now. Take a look at current-day tools like Google
Assistant or Siri. These AI’s know a lot more than any human being knows (because
they have an endless supply of information constantly at their disposal). Some
robots today are amazing at interpreting their surroundings and figuring out what’s
expected of them. Current prototypes of autonomous driving cars may very well
already be safer than human drivers. However, even with all this computer power
and all this data and intelligence there’s still one thing at which every AI sucks:
understanding human behaviour.

A great example is Honda’s humanoid robot Asimo, which was developed a
few years ago. In every single way this was a great feat of engineering. However,
during a demonstration it failed horribly because of one simple misunderstanding
of human behaviour. The robot didn’t understand why people would want to take
pictures of it and thus concluded that when people were raising their camera or
mobile phone to take a picture, they were raising their hands to ask a question. The
robot froze, repeating over and over “Who wants to ask Asimo a question?” [3]. And
this interpretation of human behaviour is something current AI still doesn’t know
how to do, even though it’s something we humans find very easy! We immediately
understand what’s happening when someone is hanging out of the window of a
train that’s about to leave to hug someone outside. They’re saying goodbye. Pretty
straightforward, right? However, an AI might mistake it for someone trying to pull
another person out of the train. There might be something wrong in the train, an
evacuation might even be necessary I don’t believe AI will be much better
at interpreting human behaviour in just 20 years from now. And therefore it’s very
likely we’ll still be needing humans to develop software that will actually do what an
end-user is expecting from it. And when we’re still building software we’ll also still
need someone to act as the earlier mentioned quality conscience. Someone who’s

204 K. van Dam

able to translate what an end-user wants from the software and who’s capable of
telling if the software is actually serving its purpose. And even though computers
might take over a lot of work in the software development industry, I think there will
still be a lot of work to be done by human beings, especially when it comes to quality
assurance and software testing. However, it will most probably be a completely
different job compared to the job today.

5 Conclusion: This Is the Future

To conclude things. During the last few decades the world of a Software Tester has
changed dramatically. Looking at the history of software testing and developments
in the work field today, I don’t expect the upcoming 20 years will be any different.
Just like many software testers today can’t even imagine what they were thinking
back in 1998, I believe that in 2038 people will have a hard time imagining what
software testers are doing today. Things like Artificial Intelligence will change the
software development industry completely. And it is expected AI will, in time, be a
part of about every piece of software. We will find ways to have software adapting
itself to the world around it. The software can change according to the needs of
people using it and it might even become able to test itself and fix possible bugs
it detects in its own lines of code. However, we will still be needing people to act
as a quality conscience. People who can make sure software being developed is
meeting the requirements of human beings using the software. Human beings whose
behaviour will most probably remain a mystery to even the most intelligent AI. It
might even be the software testers, or whatever we will call them in the future, who
could one day prevent AI from becoming too intelligent (Skynet, anyone?). But what
does all this mean for current day software testers? What should we be focussing
on? For what things should we be preparing ourselves?

First off, we should keep investing in test automation. It can only be expected
test automation is something that will stay and it will keep improving itself until
eventually test automation frameworks will actually be able to do (some) testing
instead of just checking some pre-programmed test. But, more importantly I believe
we should keep investing in communication and collaboration. It’s incredibly
difficult to get a good understanding of what an actual end-user of a piece of
software wants and needs. And it might be just as difficult to make sure everyone
involved with creating that software shares the same understanding of what it is the
software should be doing to meet the requirements from this end-user. Even today
software testers should already act as a quality conscience and make sure software
is meeting the requirements. This means the tester is already a linking pin between
business and IT today, and will be this linking pin even more in the (near) future.
Software testers today might consider broadening their expertise and start looking
more at non-functional requirements like performance and security. These things are
already really important today but will be even more important in the (near) future.
We don’t want our current-day laptop to be hacked, nor do we want it to fail at

The Future of Testing 205

certain tasks because it’s incapable of executing some calculations within a required
time frame. However, when something similar would happen to an autonomous car
driving at a great speed on the motor way in 20 years from now it would predict
disaster! It’s up to the software testers of the future to make sure chances are as
small as humanly possible that something like that can happen with software that
might be responsible for human lives. I don’t know what the future of software
testing will be bringing us, but I do know it will require us to keep staying ahead of
the game. To keep investing in knowledge, to keep improving in our skillset and to
remain able to adapt to change. Whatever change that may be. Only then will we be
able to survive in this future world of software testing!

P.S. Anyone up for a cup of coffee somewhere in 2038 and a look back with me
at the things I’ve written down here?

Acknowledgments The author would like to thank Joris Meerts, Pascal Maus, Pieter Withaar, Piet
de Roo, Huib Schoots and Berry Kersten for their input and feedback on this chapter, which was
loosely based on an earlier published interview with some of these people.

References

1. Gray, K.: What Goes on in Brains: How an Understanding of Neuroscience Makes a Difference
When you Advocate Agility; P3X Conference November 8th 2018, London (2018)

2. Levitin, D.J., Luke, D.: The Organized Mind. Penguin Group US, New York (2014)
3. https://www.theverge.com/2013/7/6/4498808/honda-asimo-disappoints-when-it-confuses-

phones-for-hands. Accessed June 19 2019

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

