
Lean principles for medical devices

Versie 1.0.1

April 2019
Johan van Berkel & Patrick Duisters

adviseren. leren. doen.

Agenda

• Introduction

• Background

• Determine topics

• Cover first topic

• Break

• Cover second topic

• (Optional) third topic or free discussion / questions

• QBM feedback

2

About Improve Quality Services

3

http://www.linkedin.com/company/37643

@improveqs

info@improveqs.nl +31 (0) 40 202 1803

Prof. Dr. Dorgelolaan 30, 5613 AM Eindhoven

Amsterdamsestraatweg 55A, 3744 MA Baarn

Consult Train Execute

Who are you?

• Name, current position

• What do you hope to learn here?

Improve Quality Services B.V.

4

Who are you?

• Circle exercise

Experience with medical development?

Improve Quality Services B.V.

5

None

Some

A lot

Who are you?

• Circle exercise

Experience with LEAN principles?

Improve Quality Services B.V.

6

None

Some

A lot

About Patrick Duisters CTEL

• Over 20 years experience
- Software Testing & Quality Assurance

- Administrative, Technical, Medical,
Financial, Governmental, Automotive

• Medical experience:
- Interventional X-Ray (tester & process mgt)

- Refurbished Systems (tool validation)

- Philips Innovation Services (test architect)

- Biocartis (test architect & usability)

- Image Guide Therapy: Business Incubation (test architect & usability)

• Test Consultant & Trainer

Improve Quality Services B.V.

7

About Johan van Berkel

• 13 years experience
- Software and Hardware Testing

- Embedded and Medical domain

• Medical experience
- Image Guided Therapy Philips

▪ Test Designer Geometric domain

- Digital Computational Pathology
▪ Verification Lead ART Scanner

▪ Coaching of requirements engineers

• Test Consultant

Improve Quality Services B.V.

8

Background

9

Background

10

A long time ago…

Background

11

Times change

Background

12

Sequential development:

Iterative development:

Background

13

Incremental

Iterative

Background

14

Sequential development:

Iterative development:

“Everything, all the time”

Implement Verify Validate

Determine topics

15

Brainstorm (20 min)

What related problems have you seen?

• Split up group (3-4 persons per team)

• Select top three most interesting topics

• Stick them on the board

Voting (5 min)

• Group similar topics

• Split in / out of scope of presentation

• Vote on the topics you like to discuss

Out of scope topics can be discussed ad-hoc at the end of this session

Shifting perspective

16

Lean principles for software development

Principles are goals that are

considered worth pursuing,

without describing how they

should be pursued.

Shifting perspective

17

Limited number of principles covered in this context

Most valuable for most

organizations

Definition:

18

This principle

Lean as a whole

Source of confusion…

Symptoms:

19

Requirements

Designs

Implementation

Verification evidence

Validation evidence

Requirements are most impactful:

Symptoms:

20

Waste in requirements results in

• Test coverage too high (unneeded effort)

• Test coverage too low (requires refactoring across entire DHF)

• Cumbersome submission (difficulty answering questions)

• Endless discussions

Plethora of causes:

• Incorrectly purposed

• Missing/Redundant

• Superfluous/Deficient

Solutions:

21

Incorrectly purposed

Not all requirements are created for the same purpose

Different purpose ➔ Different process

Solutions:

22

Incorrectly purposed

W
h
a
t c

u
s
to

m
e
r

w
a
n
ts

W
h
a
t
a
u
d
it
o
rs

n
e
e
d

Why do we create requirements:

Process
requirements

Business
requirements

Product
requirements

Solutions:

23

Redundant / Missing

Combing the desert?

Do it systematically…

Solutions:

24

High level goal or characteristic of the product

Capability supporting the intended use

(Non-)functional requirement

Mutually Exclusive, Collectively Exhaustive

• Use characteristics that are useful for you

• Define capabilities at high level

• Use customer/user terminology

• Allow requirements to emerge ad-hoc

• Requirement doesn’t fit? Tweak the model!

Redundant / Missing

Solutions:

25

Superfluous / Deficient

The how/what paradigm trap:

Why?

How?

ImplementationRequirement

Solutions:

26

The how/what paradigm trap:

Why?

How?

ImplementationRequirement

How?

Why?

??? ???

Requirements are expected to contain “some degree of implementation”

Superfluous / Deficient

Solutions:

27

“Just use designs to figure out the details…”

Component behavior

Component behavior

Component behavior

Component behavior

Component behavior

… System behavior? DHF

+

Superfluous / Deficient

Solutions:

28

Define what constitutes as a requirement:

• Serves a purpose (product, process, business)

• Executable or observable by its user(s)

• Detailed at the level it is expected to be verified

• Coverable by approx. 1-3 test cases

Maintenance costs are determined by level of regression

Stable definition ➔ Less discussion ➔ Less changes ➔ Less regression

Also helps with change management

What is changed ➔ update requirements ➔ update / execute related tests

Superfluous / Deficient

Definition:

29

Avoiding decisions for as long as possible in order to save rework:

Process

Uncertain

Certain

Start

Process

Update

Delta? Process

Done

Decide early Decide late
+ Update Process>

Symptoms:

30

E
ff

o
rt

Certainty

Focusing on the wrong thing…

Risks

DHF

Process + Update Process>

..Causes heavy refactoring…

…Or worse…

Solutions:

31

Differentiate between formal and informal processes and documentation

Formal

process

Reliable DHF?

Intended purpose?

Safe and effective product?

Solutions:

32

Differentiate between formal and informal processes and documentation

Formal

process

Milestones don’t

trigger formal

processes…

…But updates

to the DHF do!

Solutions:

33

Only update parts of the DHF that:

• Are needed for milestone progression

• Are properly understood (low risk of change)

Solutions:

34

Introduce an informal “End Of Development” milestone

E
o

D

Narrow view during sprints

’s

upon

’s

upon

’s

• Mitigates the risks of iterative development:

Definition:

35

Optimizing processes and actions, based on the impact it has on the entire

chain:

Optimize this

To avoid doing this

Symptoms:

36

Assumptions in requirements & too detailed test cases

Refactoring due to assumptions:

Inefficient test execution

E
ff

o
rt

Certainty

Process + Update Process>

Solutions:

37

• Learn and adapt

• Write requirements / tests conform their maturity

• Exploratory modeling

• Exploratory testing

• Create test design

• Define traceability

• Create test cases

High effort

Low effort

Informal

Formal

Symptoms:

38

Overzealous prioritizing of product implementation over maturity

Increases test execution time

Obstructs drawing conclusions

Solution:

39

Prioritize test lead time over new implementation

Implement Test Fix

Implement Test Fix

Implement Test Fix

Implement Test Fix

Implement Test Fix

Implement Test Fix

Implement Test Fix

Implement Test Fix

Implement Test Fix

Implement Test Fix

Implement Test Fix

Implement Test FixFix

Leave in

Decreased time

needed to test

Cost

Increased

velocity

Fix

Solution:

40

Prioritize test lead time over new implementation

Workarounds

Performance loss

Obstruct conclusions Time to resolve

Symptoms:

41

Risks related to later phases are missed or downplayed

Risks

Challenge

Issue

Risks

Challenge

Issue

Expectation Reality

???

Solution:

42

Involve stakeholders as earlier as possible

ConfrontationRisk

False alarm

Challenge Investigation

Non-issue

Issue

Ad-hoc discussion

43

QBM feedback

44

