'CONTINUOUS ;
COMMUNICATION

PART 2

Kaspar van Dam, Consultant,
Improve Quality Services, follows up his first article
on the importance of communication in agile with

practical guidelines.

and methods, | think helpful to improving

communication in agile teams. | consider
them to be mere guidelines instead of hard
rules and | will certainly not claim this to be
a complete list of everything needed. But it's
my experience and the experience of many
colleagues that these are things that could
help to make software development a lot
more efficient, and in the process also a lot
more fun. {

KNOW YOUR DOMAIN

I n this article | intend to set out some ideas

Times when IT only needed to know J
how to program or test are gone. If we
truly want to understand what drives the

customer to require certain functionality
we need to understand the world in

which the customer lives. Thus, we should
speak the same language the business
speaks, creating a ubiquitous language
—one of the most important pillars of
domain driven design. Only when one
understands both the business needs and
the technological challenges can one give an
optimal advise on how to effectively create
the most value for the business.

SHORT LINE, LESS NOISE

We probably all know the game from
elementary school where one kid whispers
a story to his neighbour who in turn passes

/

it on to the next kid in line, etc. The last kid
in line tells the story out loud and everyone
laughs because it’s a completely different ¢
story than the one the game started with.
Always.

The same applies for software
development. The longer the line, the more
noise you'll get. Whenever possible try to
get information directly from the source and
use the opportunity to ask any questions
you might still have directly to this source.
Also make sure you've understood what they
said. Summarise what has been said in your
own words and ask for confirmation that this
really is what the other party wants. Prevent
situations where everyone interprets things
their own way resulting in miscammunication
and developed software that turns out to be




COMMUNICATION

45

something completely different than what the
business thought they were asking for.

BE IN THE SAME ROOM

Continuing on the short line principle:
face-to-face communication always works
best. Preferably including a white board or
piece of paper and some markers. There’s a
hype around working location independently.
However, quite often this is more something
to cut costs than something born out of
necessity. No matter what, it's simply not
working! Real teamwork is only possible when
you're together as a team. At least, most of
the time.

PAIRING

Besides sitting in the same room it could also
be a good idea to sit behind the same desk
every once in a while. Most programmers
are familiar with the term pair programming.
Coding together means two pairs of eyes
and two brains. Thus less chance of making
mistakes and less chance of continuously
overlooking that one, not so obvious, error.
Within an agile team the principle of pair
programming can be extended to not only
apply for programming and programmers,
but also for testers and other team members.
For instance, as a tester, join forces with the
programmer when he’s writing his unit tests.
And in return, let the programmer sit next to
you to think along when writing automated
tests. It’s a case where one plus one equals
three.

DON'T ASSUME

It’s a well known saying in the business: don’t
assume unless you want to make an ASS out
of U and ME. It is very tempting to assume
things when someone’s not present at a
certain important meeting. Especially when
your under stress because of an upcoming
deadline. But even when you're almost
certain what that certain stakeholder would
say, never forget to get this confirmed. Also
get it confirmed before you start working

on it, and when it’s not possible to get

it confirmed because the stakeholder in
question has no time? Then there’s only one
assumption you can make: apparently it’s not
that important, so no need for the team to
put any effort into it, yet. Don't forget to get
this assumption confirmed or refuted as soon
as possible.

DARE TO SAY ‘NO’

Within software development we have grown
to treat important stakeholders with kid
gloves. However, keep in mind that we as
developers and testers are the specialists. The
business really appreciates it when we dare
to say ‘no’ whenever we know something will
just not work technically or when we know
there are other ways to create the same or
even more business value with less effort. At
least, they should appreciate this. There’s no
shame in pointing out that something simply
isn’t possible, even when this is the result

of a lack of time and/or the lack of certain
knowledge. Try to create an open atmosphere
where there’s room to be honest and also
room to criticise. However, ‘no’ should

never be the final word. There should be
argumentation why something can’t be done
or shouldn’t be done. Whenever possible
offer some alternatives as well.

#NOESTIMATE

During a recent Cuke Up! Conference agile
specialist, Dan North asked the audience

two questions about estimation: “How many
of you ever made an estimate on how long a
project would take?” Everyone in the room
raised a finger. However it was quite shocking
to see all fingers disappear after the next
question: “Did any of you ever get one of
these estimations right?”

It's a simple fact that it’s mere impossible
to give accurate estimations for software
development. Even though we know this,
we still often tend to give very precise
estimations on how long something will take.
Sometimes even as detailed as man hours
or FTEs. Everything to get it fitted in that
one planning spreadsheet. But what’s the
value of an estimation when we know for
a fact that's it's near 100% certain that this
estimation is wrong! We already know we will
run into certain ‘Unpredictable Bad things’
as Dan North calls it. Bad, because they will
cost us time and/or money. We can’t put an
estimation on how much time or money they
will take simply because we don’t know in
advance what these bad things will be: they
are after all unpredictable!

The solution seems simple: #NoEstimate.
However, it won't work to just start work and
see where we'll get and when this will be.

So #NoEstimate does not mean you have to
abandon estimation and planning all together.
It's about making it more valuable. For
example, by working with ranges instead of
man hours. A range | personally find »

Prevent situations
where everyone
interprets things their
own way resulting in
miscommunication
and developed
software that turns
out to be something
completely different
then what the
business thought
they were asking for

KASPAR VAN DAM
CONSULTANT
IMPROVE QUALITY SERVICES

With over 10 vears of experience in IT,
Kaspar advises colleagues and clients
on matters concerning testing and/

or collaboration and communication
within (agile) teams. He has published a
number of articles on test automation,
agile ways of work and continuous
communication and is a speaker on

these matters at events.

TEST Magazine | January 2017



46

COMMUNICATION

We tend to forget
that communication,
effective
communication, is
really quite hard! You
have to work for it

Editor’s note: Part one of Kaspar's article
was published in the November 2016 issue
of TEST Magazine.

TEST Magazine | January 2017

very effective is the range between ‘it might
be possible to have it ready, but only if
everything goes well” and ‘we would be quite
ashamed if we haven’t finished it by then!” In
other words: a good case scenario and a bad
case scenario. If management still requires an
estimate in man hours then ask them if they
really prefer an estimation in hours that’ll
almost certain be wrong or an estimation

in the form of a range in time that’ll almost
certain be right.

BRING YOUR OWN
TEAM

We all know the ‘bring your own device’
(BYOD) principle. The idea behind ‘bring your
own team’ is basically the same. Every new
team needs time to get up to speed. You
need to get to know the people, you need to
create a safe environment in which you can
trust each other and where you have room
to ask for help without being afraid of being
laughed at.
Given that a team needs time to get
started, why not bring a complete team
that’s already passed this stage? Or at least
let the team itself decide who should
join the team. This does mean a lot of
responsibility for the team, which could be
a risk if the team isn’t up for it though. For
instance, if they value personal friendship
over creating a well-oiled team, and the best
result for the customer, then this principle
might backfire. Therefore the next point:

TEAM RESPONSIBILITY

If a team feels responsible for what they
do (or don’t do!) then the team members
will likely feel more involved in the project
and tend to work more efficiently while
having more focus on quality. They don’t
build and test good software because the
manager wants them to. They don't fall
back to ‘mortgage driven development’,
or working just because it pays the bills.
They actually want to make something
good for themselves. Because they’ll feel
proud when they deliver something good
and are ashamed when they don’t. This

is all about intrinsic motivation. However,
a team can only feel responsible if they
actually get responsibility. This means that
management should give the team a lot of
freedom on how they want to do their work.
However, do keep in mind, giving a team
responsibility is no guarantee that they will
also feel responsible. This is dependent on

the team and its members. It's a matter of
giving and taking.

HAVE FUN

Possibly one of the most important but least
understood things within an agile world,

is how valuable it can be to have fun while
working. Everyone knows that people will
work more efficiently and actually harder
when they are having fun. Everyone would
like to have fun at work (right?). Especially
when working in a team it’s really important
to not just work from 9 to 5, but also to

just have a good time as a team. So, invest

in a football table, a dartboard or a game
console on the working floor. Take an hour
off and go to the pub together or some
other fun ‘teambuilding” activity. A company
that understands this principle well is
Google. | strongly advise you to Google the
Google offices and see how they brought the
principle of having fun at work to the next
levell You want people to want to go to work.

CONCLUSION

| very much doubt anyone reading this article
is in awe about hearing loads of new things.

| actually hope most people reading this
article are wondering if they really did see
anything new here. Communication within
any project is something so obvious, so
logical. It shouldn’t be something to even take
the trouble talking about. Right?

That's just where things might go wrong.
We tend to forget that communication,
effective communication, is really quite
hard! You have to work for it. Not just
during the stand-up or in that one specific
meeting. But all the time. Thus, continuous
communication.

It's good to take a step back and look at
our ‘agile processes’. The communication
structured in some predetermined meetings
and the lack of communication often visible
outside these meetings. Have we forgotten
what the Agile Manifesto told us in the first
place? Has agile actually failed?

I think it hasn’t, but | do think we
should take that step back and look from a
distance at what we’re doing in our work.
Then conclude that we often neglect the
importance of communication. It is however
something worth investing time (and money)
in. Because continuous communication can
make software development (or basically any
type of work) a lot more efficient, as well as a
lot more fun. So, let’s do it! Let’s talk. &



